超快激光为光学材料“新贵”开辟新路径
超快激光具有超快超强的特点,将超快激光聚焦到玻璃内部时,会在焦点附近产生超高电场、超高温度、超高压力等现象。基于这一原理,在局部高温高压下,超快激光焦点处微米尺寸范围内的玻璃会出现纳米相分离,简单说来就是玻璃“融化”后,会在局部区域出现大小为几个纳米的新的相。”通过调节激光参数,改变焦点范围内的温度和压力,就能够对纳米相的组成元素进行调节。而通过控制激光辐照时间,则能让纳米相与周围融化的玻璃基质之间进行离子交换,从而进一步调控纳米相的组成元素。“谭德志解释说,切断激光之后,这些分散的纳米相就会发生晶化,形成一颗一颗纳米晶。
近年来,钙钛矿成为光学领域的“新贵”,这种纳米级别的半导体材料,由于其特殊的发光性能,在显示及照明等领域展现出巨大的应用潜力。具有不同组成元素的钙钛矿纳米晶具有不同的半导体带隙宽度,在紫外光或者蓝光照射下可以发出不同颜色的光。研究团队通过精心设计及一系列实验发现,超快激光3D直写技术可以在无色透明玻璃内实现带隙可控、任意形状的三维半导体纳米结构。“利用激光直接改变纳米晶的发光颜色,实现从蓝光到红光连续可调,是我们在该领域的重大突破之一。在这之前,在材料内部写入发光连续可调的微纳结构几乎是超乎想象的。”谭德志表示。
为了获得理想的超快激光直写工艺,团队成功烧制出了均匀透明的前驱体玻璃,使得三维半导体纳米晶结构得以实现。谭德志进一步解释说「传统的纳米晶及其器件制备工艺复杂,对制备环境要求高,成本高,且只能构筑二维结构。我们的技术是在玻璃中直写,可以写出任意想要的形状,实现纳米晶的三维构造。」
该项研究的另一突破就是利用超快激光在玻璃内3D直写形成的钙钛矿纳米晶表现出非常好的稳定性。「钙钛矿存在稳定性差的缺陷,光照、热处理、氧气、水蒸气等,都会使其从光电性能良好的钙钛矿结构转化为非钙钛矿结构,所以必须经过严苛的封装处理。而我们的技术是直接在玻璃内激光直写就可以,无需封装。」谭德志说。为了检测纳米晶的稳定性,研究团队将制备后的材料放在强光下照射、在高温火炉内炙烤、在酒精中浸泡,甚至将玻璃碾碎成玻璃渣,在上述极端条件下,通过激光直写的钙钛矿纳米晶的发光特性依然稳定。这些稳定性实验充分表明该类器件可以在比较恶劣的条件下长期使用,这将大大延长相关显示及照明设备的使用寿命。”我们的技术可以减少纳米晶及其光电器件的制备工序,且所有过程不涉及到任何有机物,大大降低成本,同时提高了材料与器件的稳定性。我们的研究表明纳米晶玻璃在高密度数据存储、micro-LED、3D显示、全息显示等多个领域都将大有可为。我们的工作为超快激光极端制造以及玻璃等多个领域开辟了新的应用场景。“谭德志说道。 (采编:www.znzbw.cn)